Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(3): 031101, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-32031849

RESUMO

We introduce the galaxy intensity mapping cross-correlation estimator (GIMCO), which is a new tomographic estimator for the gravitational lensing potential, based on a combination of intensity mapping (IM) and galaxy number counts. The estimator can be written schematically as IM(z_{f})×galaxy(z_{b})-galaxy(z_{f})×IM(z_{b}) for a pair of distinct redshifts (z_{f},z_{b}); this combination allows to greatly reduce the contamination by density-density correlations, thus isolating the lensing signal. As an estimator constructed only from cross-correlations, it is additionally less susceptible to systematic effects. We show that the new estimator strongly suppresses cosmic variance and consequently improves the signal-to-noise ratio (SNR) for the detection of lensing, especially on linear scales and intermediate redshifts. For cosmic variance dominated surveys, the SNR of our estimator is a factor of 30 larger than the SNR obtained from the correlation of galaxy number counts only. Shot noise and interferometer noise reduce the SNR. For the specific example of the dark energy survey (DES) cross-correlated with the hydrogen intensity mapping and real time analysis experiment (HIRAX), the SNR is around four, whereas for Euclid cross-correlated with HIRAX it reaches 52. This corresponds to an improvement of a factor of 4-5 compared to the SNR from DES alone. For Euclid cross-correlated with HIRAX the improvement with respect to Euclid alone strongly depends on the redshift. We find that the improvement is particularly important for redshifts below 1.6, where it reaches a factor of 5. This makes our estimator especially valuable to test dark energy and modified gravity, that are expected to leave an impact at low and intermediate redshifts.

2.
Living Rev Relativ ; 21(1): 2, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29674941

RESUMO

Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

3.
Living Rev Relativ ; 16(1): 6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-29142500

RESUMO

Euclid is a European Space Agency medium-class mission selected for launch in 2019 within the Cosmic Vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

4.
Phys Rev Lett ; 98(25): 251301, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17678009

RESUMO

Most parametrizations of the dark energy equation of state do not reflect realistic underlying physical models. Here we develop a relatively simple description of dark energy based on the dynamics of a scalar field which is exact in the limit that the equation of state approaches a cosmological constant, assuming some degree of smoothness of the potential. By introducing just two parameters defined in the configuration space of the field, we are able to reproduce a wide class of quintessence models. We examine the observational constraints on these models as compared to linear evolution models and show how priors in the field space translate into priors on observational parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...